      Information and research about the geometry invented by Herman Minkowski       Home

Taxicab Geometry

 Angles/Trigonometry Angles Angle Sections Inscribed Angles Parallel line theorems Trigonometry Trig Identities Trig Calculus Parallax

Length / Area / Volume

Conics

Geometric Figures

The Taxicab Metric

Triangles Research

Other Resources Kevin's Corner  Angles and Trigonometry > General Information

This section defines angles that are native to taxicab geometry and investigates their properties. Trigonometric functions and their identities are also explored.

 Angles: Traditional taxicab geometry simply relied on Euclidean angles, but pure taxicab geometry has its own native angles and arc length based on the taxicab circle. Angle Sections: Can't trisect a Euclidean angle? Step inside for a refreshing change of pace... Inscribed Angles: A look at the Euclidean inscribed angle theorem in the framework of taxicab geometry. Parallel line theorems: Many of the familiar theorems involving angles and parallel lines with transversals in Euclidean geometry carry over nicely to taxicab geometry. Trigonometry: If we have angles, we must also have...TRIG! Trig Identities: There are probably just as many trig identities in taxicab geometry as in Euclidean geometry. Trig Calculus: Examination of the derivatives of taxicab trig functions. Parallax: Parallax is the apparent shift of an object due to the motion of the observer. A commonly used approximation formula for parallax in Euclidean geometry turns out to be the exact formula in taxicab geometry - a rare simplification from Euclidean to taxicab geometry.     Question or comments? Email the .
Taxi cab clip art courtesy of DailyClipArt.net