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A taxi, travelling from the point (x1, y1) to the point (x2, y2) through a rectangular grid
of streets, must cover a distance |x1 − x2| + |y1 − y2|. Using this metric, rather than
the Euclidean “as the crow flies” distance, gives an interesting geometry on the plane,
often called the taxicab geometry. The lines and points of this geometry correspond
to those of the normal Euclidean plane. However, the “circle”—the set of all points
at a fixed distance from some center—is a square oriented with its edges at 45◦ to the
horizontal (FIGURE 1). As can be seen, there are more patterns of intersection for these
than there are in the Euclidean plane.

Figure 1 Circles of a taxicab geometry.

There is nothing particularly special about squares and (Euclidean) circles in this
context. Any other centrally-symmetric convex body also has a geometry in which it
plays the rôle of the circle, with the unit distance in any direction given by the parallel
radius of the body. The reader curious about these “Minkowski geometries” is referred
to A.C. Thompson’s book [11].

While taxicab geometry has many applications in advanced mathematics, it is also
studied at an elementary level as a foil for Euclidean geometry: a geometry that differs
enough from that of Euclid that it enables students to see the function of some funda-
mental axioms. (As Kipling might have put it, “What do they know of Euclid who only
Euclid know?”) This use, in undergraduate courses, goes back at least to Martin [10]
and Krause [9], both in 1975. (Byrkit’s 1971 article [5], while also influential, deals
with the taxicab metric on the integer lattice, axiomatically a very different system.)
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In this paper we survey some basic facts about axiomatic taxicab geometry. We
give particular consideration to the question of angle measure (an active research area
in its own right [3, 4, 6, 7]), and show that the taxicab geometry sheds some light on
Wantzel’s famous result that the angle cannot be trisected by classical methods, a high
point of many undergraduate geometry courses.

Following Martin and Krause, we consider the taxicab metric in the context of a
set of axioms for Euclidean geometry, based loosely on those of Birkhoff [1], which
can be summarized as follows. The terms “point” and “line” and the relation “on”
are undefined, and the field of real numbers is axiomatized separately. Comments and
definitions are interspersed.

INCIDENCE AXIOM. Two points are on a unique line, and there are three points
not all on the same line.

The unique line through two points A and B is represented as
←→
AB . This axiom

allows a line to be identified with the set of points that lie on it.

RULER AXIOM. For every line l there is a bijection fl between the points of l and
the real numbers.

A line segment is a set of the form {x : a ≤ fl(x) ≤ b}, and its endpoints are the
points that are mapped to a and b by fl . A set S is convex if it contains any line segment
that has both endpoints in S. The distance d(A, B) between two distinct points A, B
is defined to be | f (A) − f (B)| for the bijection f whose domain is the line

←→
AB . Two

line segments AB and C D are congruent if d(A, B) = d(C, D).

SEPARATION AXIOM. The complement of any line may be partitioned into two
convex sets, such that every line segment with one endpoint in each intersects the line.

A ray is any set of points on a line l of the form {x : fl(x) ≤ a} or {x : fl(x) ≥ a};
the point with fl(x) = a is called the endpoint. An angle is the configuration consisting
of two rays with a common endpoint, not both subsets of a common line. Angles are
supplementary if they share one ray, and the union of the other two rays is a line.

PROTRACTOR AXIOM. There exists an additive measure on the angles at each
point, such that the measures of two supplementary angles add to π .

This axiom is actually (see [10, §14.2]) provable from the first three. However, it is
often included for greater clarity. Angles are defined to be congruent if they have the
same measure.

SAS CONGRUENCE AXIOM. If two triangles have two sides and the included angle
congruent, then the other side and angles are also congruent.

PARALLEL AXIOM. Given a line and a point not on the line, there exists a unique
parallel to the line through the point.

One of the main triumphs of axiomatic geometry is the fact that this axiom set is
“categorical”: every system obeying it is equivalent to the Euclidean plane. (See, for
instance, [10, p. 322], for a discussion of this.)

Returning to the taxicab geometry, we see that the first three axioms (and thus the
protractor axiom) are valid in the taxicab geometry, as is the parallel axiom. However,
while this shows that an angle measure exists, it is not unique. In the usual develop-
ment of an axiomatic system of this type, the function of the SAS axiom is to make
both “rulers” and “protractors” invariant under translation (homogeneous) and rotation
(isotropic), thus determining both the metric and the way in which angles are mea-
sured. However, no angle measure for the the taxicab geometry can be consistent with
the SAS axiom.
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This can be proved indirectly, by noting that with any angle measure, the taxicab
geometry satisfies Incidence, Ruler, Separation and Parallel; if it also satisfied SAS
it would be, as noted above, completely equivalent to the Euclidean geometry. But,
whatever angle measure is chosen, two taxicab circles can intersect in a line segment,
a thing impossible in the Euclidean plane.

However, there is a more satisfying direct proof. Firstly, we note that the SAS ax-
iom implies (see, for instance, [10, §17.3]) the SSS congruence theorem in the pres-
ence of the first three axioms. In FIGURE 2, �O BC and �DOC are equilateral and
hence (by SSS) have all three angles equal. But m∠OC B + m∠DC O = π , whereas
m∠BOC + m∠DOC < π . (A similar, but less general, argument appears on p.195
of [10]).

A O D

B

C

Figure 2 A counterexample to Euc.I.4 in the taxicab geometry

The taxicab geometry, then, demonstrates the function of the SAS axiom in some-
what the same way that hyperbolic geometry demonstrates the function of Parallel.
However, the analogy is not perfect. Denying Parallel in the presence of Euclid’s
other axioms gives a unique alternative, hyperbolic geometry. Denying SAS does not
let us derive the taxicab geometry. There are many geometries that satisfy the other
axioms—for instance, all the two-dimensional Minkowski geometries do so. As ob-
served above, no such geometry can also satisfy SAS unless it is Euclidean.

The taxicab metric is not isotropic, but it is homogeneous. Homogeneity can be
axiomatized in a “non-SAS” geometry in various ways. For instance, Parallel could
be replaced by the following, based on Euc.I.34:

PARALLELOGRAM AXIOM. If both pairs of opposite sides of a quadrilateral are
parallel, then they and the opposite angles are equal.

In the presence of Incidence, Ruler, Separation and SAS, the axioms Parallel and
Parallelogram are equivalent; but without SAS, Parallelogram is stronger. As well as
implying the uniqueness of parallels, it also forces the geometry to be homogeneous;
any figure can be translated to any point without distortion of length or angle measure.
Parallelogram falls short of being a “taxicab SAS” axiom, however. It neither im-
plies a taxicab metric (the axiom set {Incidence, Ruler, Separation, Parallelogram}
is consistent with every Minkowski geometry) nor distinguishes between the various
homogeneous taxicab geometries with different protractors.

The fact that obvious axiom sets don’t fix the nature of the protractor is presumably
one of the reasons why it has been observed (see [3, p. 279] or [6, p. 32]) that there is no
one angle measure that is wholly natural to Minkowski geometry. Martin [10, p. 195]
and Stahl [13, p. 24] consider a geometry in which the taxicab metric is endowed
with Euclidean angle measure. Thompson and Dray [12] give an alternative model in
which angles are measured in “t-radians”, units based on the taxicab length subtended
on the unit circle. Yet other definitions of angle are also given by A. C. Thompson [11]
and B. Dekster [6]. Moreover, Busemann [4] and Glogovśkiĭ [7] each give different
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operations generalizing Euclidean angle bisection, which can be taken as bases for
angle measurement.

Let’s look at some easy theorems of Euclidean geometry, and see how they fare
under the new axiom set. The construction of an equilateral triangle (Euc.I.1) is valid
in the taxicab geometry (and with a vengeance for any base with a slope of ±45◦,
on which there are infinitely many equilateral triangles!) So do the “communication”
theorems Euc.I.2 and Euc.I.3. in which a line segment is copied to a specified location
and orientation. However, as seen above, the taxicab geometry does not have the SAS
congruence property (Euc. I.4). Neither does the Pons Asinorum (Euc.I.5, “the base
angles of an isosceles triangle are equal”) nor its converse hold, the taxi presumably
having rendered the donkey obsolete as a means of transportation! Moreover, there is
no SSS congruence property; counterexamples are readily found to all of these.

Euclid’s next proposition, I.9, is a construction bisecting an angle. Stahl [13, p. 59],
who follows Martin in using Euclidean angle measure, gives as an exercise “Comment
on [Euc. I.9] in the context of [the taxicab geometry].” Given the level of the textbook
(undergraduate, with emphasis on prospective teachers), the location of the exercise (in
the second chapter), and the lack of comments or hints, the comment is presumably
intended to be on the validity of the Euclidean proof (which uses SAS) in the taxicab
context. However, it is interesting to ask whether some other construction for bisecting
“Martin angles” does work.

To pursue this question of angle bisection, we define a “taxi construction” in terms
of the following operations:

1. Given two points, construct the straight line through them.
2. Given an ordered pair of points, construct the taxi circle (“diamond”) with center

at the first and passing through the second.
3. Given two straight lines, construct the point (if any) at which they meet.
4. Given a straight line and a taxi circle, construct their intersection (if any).
5. Given two taxi circles, construct their intersection (if any).

The intersections of a line and a taxi circle, or of two taxi circles, can be one or two
points, or (as in FIGURE 1) may consist of a line segment, a point and a line segment,
or two line segments. In cases with a line segment, we represent it by its two endpoints
(though the fact that it is a segment may be used freely). Construction of any interior
points of the intersection must be done separately. Two circles, or a circle and a line,
which intersect in two points, will be said to be in general position.

We may wonder whether we should also allow the “corners” of a circle, or the
horizontal and vertical lines through a point, to be constructed as primitive operations.
It turns out that there is no need to do this, as a fairly simple construction using the
listed operations gives these.

CONSTRUCTION. Given a circle, to determine its four corners

Choose five distinct points A1, A2, A3, A4, A5 on the circle. Construct each of the
ten lines determined by pairs Ai , A j , and consider the intersection of each with the
circle. By the pigeonhole principle, two of the points must lie on the same side of the
circle, and the corresponding intersection will be that entire side. Its endpoints are two
adjacent corners of the circle. The lines through each of these corners and the center
of the circle intersect the circle again in the other two corners.

As a bonus, we have also constructed the horizontal and vertical lines through the
center of the circle! We now come to the main result of the paper.

THEOREM. There is no construction in the taxicab geometry that will bisect the
Euclidean measure of an arbitrary angle.
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Proof. We define a point to be rational if both its coordinates are rational; a line
to be rational if it has the form ax + by = c for rational a, b, c; and a taxi circle to
be rational if it has rational center and rational radius. It is easily verified that all five
elementary constructions, given rational data, return (if anything) one or more rational
elements.

Let O = (0, 0), A = (1, 0), and B = (1, 1). The angle ∠AO B has all elements
rational; but the ray bisecting it has slope tan(π/8) = √

2 − 1 and is not rational. Thus
this angle cannot be bisected in the Martin taxicab geometry.

This proof is interesting in its own right; and pedagogically it is very useful as a
warmup exercise to prepare students for Wantzel’s much more important (but signif-
icantly more difficult) proof [14] that no Euclidean construction trisects an arbitrary
angle. (See [2], or undergraduate geometry texts such as [10] or [13], for accessible
modern presentations of this result.) In Wantzel’s proof, the Hippasian numbers—
those that can be obtained using addition, subtraction, multiplication, division, and the
square root function—are shown to be closed under Euclidean construction, and to
contain values defining a 60◦ angle but not a 20◦ angle.

Euclid uses the bisection of an angle in his next proposition, the bisection of an
arbitrary straight line. He constructs, on the base AB, an isosceles triangle �ABC ,
bisects the angle ∠AC B, and shows that the bisector also bisects AB. Clearly, this
approach must be abandoned in Martin’s taxicab geometry! However, a line segment
can be bisected using the taxicab equivalent (FIGURE 3) of an alternative construction
ascribed by Proclus to Apollonius [8, vol. 1, p. 268].
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Figure 3 Bisecting the line segment AB

CONSTRUCTION. To bisect a line segment using taxicab constructions

Given a line segment AB we construct taxi circles around A through B and around
B through A. If the circles are in general position (that is, if the slope of the segment
AB is not ±1), we join the two intersection points C, C ′, and the line CC ′ bisects AB.
Otherwise a slight modification, joining opposite endpoints, effects the same construc-
tion.

As a consequence of this construction, we see that in the “t-radian” taxicab geom-
etry of Thompson and Dray, an angle can always be bisected. (Indeed, as a referee
of an earlier version of this paper pointed out, it can be trisected, or divided into any
number of equal parts.) In many ways, this angle measure is more natural for a taxicab
geometry; but the analogy between the failure of angle bisection in Martin’s geometry
and angle trisection in Euclid’s suggests a valuable pedagogical reason for choosing
Martin’s definition of angle measure, if only one is to be used.
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Quadratic Residues and the
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Recently I was struck by the fact that an odd prime p has (p − 1)/2 quadratic
residues mod p and that for relatively prime p and q, there are (p − 1)(q − 1)/2
non-representable Frobenius numbers. I found the presence of (p − 1)/2 in both
expressions curious. Is there some relationship between quadratic residues and the
Frobenius numbers that accounts for the presence of (p − 1)/2 in the two expres-
sions?

As it so happens, there is. Square the non-representable Frobenius numbers for p
and q. Mod p, these numbers consist of q − 1 copies of each of the (p − 1)/2 quadratic
residues mod p, and, mod q, they consist of p − 1 copies of each of the (q − 1)/2
quadratic residues mod q. The situation for 5 and 7 is illustrated in the following table.
The first row consists of the non-representable Frobenius numbers for 5 and 7, and the
second the squares of these numbers. The third and fourth rows are the second row
mod 5 and mod 7, respectively.

x 1 2 3 4 6 8 9 11 13 16 18 23

x2 1 4 9 16 36 64 81 121 169 256 324 529

x2 mod 5 1 4 4 1 1 4 1 1 4 1 4 4

x2 mod 7 1 4 2 2 1 1 4 2 1 4 2 4


